Format: HTML | BibTeX | DC | EndNote | NLM | MARC | MARCXML
000000221 001__ 221
000000221 037__ $$aENY-ARTICLE-2008-172
000000221 041__ $$aeng
000000221 088__ $$aRZ I07/2007/I-025
000000221 100__ $$aJanik, P
000000221 245__ $$aAnalysis of influence of power quality disturbances using a neuro-fuzzy systems
000000221 260__ $$c2007-06-28
000000221 300__ $$a4p
000000221 500__ $$aProceedings of the Seventh IASTED International Conference on Power and Energy Systems, Palma de Mallorca, Spain, August 29-31, 2007 / Ed. J. Milanovic. Anaheim, Acta Press, cop. 2007. pp. 182-185
000000221 520__ $$aThe authors propose an automated neuro-fuzzy system approach (with neural network subsystem) to power quality assessment incorporating equipment susceptibility patterns. The system is expected to handle dependencies between superposition of different disturbances and specific devices’ susceptibility to disturbances. Two neural network architectures were applied: a well known radial-basis neural networks for automatic rules’ generation and a neuro-fuzzy system for overlaid disturbances influence modeling. Proposed approach can help to predict damages or abnormal functioning of devices and implement adequate countermeasures.
000000221 6531_ $$aneural networks
000000221 6531_ $$afuzzy logic
000000221 6531_ $$apower quality
000000221 700__ $$aLeonowicz, Z
000000221 700__ $$aLobos, T
000000221 700__ $$aWaclawek, Z
000000221 8560_ $$fleon99@pwr.wroc.pl
000000221 8564_ $$uhttp://zet10.ipee.pwr.wroc.pl/record/221/files/$$zAccess to Fulltext
000000221 909CO $$ooai:zet10.pwr.wroc.pl:221$$pglobal
000000221 980__ $$aARTICLE