Format: HTML | BibTeX | DC | EndNote | NLM | MARC | MARCXML
000000310 001__ 310
000000310 037__ $$aENY-ARTICLE-2009-249
000000310 041__ $$aeng
000000310 088__ $$aRZ I07/2003/I-077
000000310 100__ $$aLeonowicz, Z$$uWroclaw University of Technology, Poland
000000310 245__ $$aAutomatic Fault Classification in Power Electronics Using Time-Frequency Distribution and Neural Networks
000000310 260__ $$c2003-01-18
000000310 300__ $$a5p
000000310 500__ $$a12th Intelligent Systems Applications to Power Systems Conference, 31.08-3.09.2003, Lemnos, Greece.
000000310 520__ $$a A new method of fault analysis and detection by signal classification in frequency converters is presented. The Wigner-Ville time frequency distribution is used to produce the representation of the signal and the probabilistic neural network as a classifier. The accuracy and robustness of the proposed method is investigated on signals obtained during the different fault mode operations of the industrial frequency converter.
000000310 6531_ $$aFault diagnosis
000000310 6531_ $$aNeural Networks applications
000000310 6531_ $$aPower system faults
000000310 6531_ $$aPulse width modulated power converters
000000310 6531_ $$aTime – frequency analysis
000000310 6531_ $$aWigner distributions
000000310 700__ $$aLobos, T$$uWroclaw University of Technology, Poland
000000310 8560_ $$fleon99@pwr.wroc.pl
000000310 8564_ $$uhttp://zet10.ipee.pwr.wroc.pl/record/310/files/$$zAccess to Fulltext
000000310 909CO $$ooai:zet10.pwr.wroc.pl:310$$pglobal
000000310 980__ $$aARTICLE